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ABSTRACT
Disaggregation is an ongoing trend to increase flexibility in data-
centers. With interconnect technologies like CXL, pools of CPUs,
accelerators, and memory can be connected via a datacenter fabric.
Applications can then pick from those pools the resources necessary
for their specific workload. However, this vision becomes less clear
when we consider data movement. Workloads often require data to
be streamed through chains of multiple devices, but typically, these
data streams physically do not directly flow device-to-device, but
are staged in memory by a CPU hosting device protocol logic. We
show that augmenting devices with a disaggregation-native and
device-independent data streaming facility can improve processing
latencies by enabling data flows directly between arbitrary devices.

1 INTRODUCTION
Many modern applications in datacenters require accelerators to
run efficiently, a major example being AI workloads requiring GPUs
or NPUs. Datacenter operators however face the challenge that not
every conceivable accelerator can be provisioned in every server as
this will lead to dramatic under-utilization of resources. Disaggrega-
tion promises to resolve this tension by offering pools of resources
connected via a fast network fabric. Applications can select a mix
of devices fitting their workload and the underlying operating sys-
tem will configure a tailored execution environment by establishing
connections to a set of accelerators from those resource pools.
Interconnect technologies like CXL allow to disaggregate accel-

erators and other devices like NICs or NVMe storage in this fashion.
However, the physical data flows pose an interesting challenge. Sup-
pose an application wants to pass a stream of data from the network
to multiple GPUs and NPUs for machine learning and then store the
processed result on NVMe. To reduce data movement, the shortest
flowwould pass data directly from theNIC to the accelerators,where
it travels between the needed GPUs and NPUs. The last accelerator
would stream its results to the NVMe storage. In reality however,
data movement will be handled by the CPU running the application
logic. Datamust be staged in CPU-side buffers to bridge between the
different protocols of the involved devices. Therefore, data will re-
peatedly flow between devices and the CPU running the per-device
protocol logic.
Even if CXL technically allows devices to interact directly with

each other, the different device communication protocols currently
prevent this feature from being practicable. While point solutions
like GPU access to storage [10] or network [6] exist, it is unreason-
able to expect every device to implement a driver stack for every
other device to enable arbitrary device-to-device data flows. In sum-
mary, while devices are physically disaggregated by CXL, data flows
remain largely centralized due to the lack of disaggregation-native
data-movement facilities.

As a solution, we propose disaggregation-native devices, where
today’s accelerators, NICs, and storage devices are augmented with
a device-independent disaggregation-compatible data-movement
facility. Towards a solution, two questions need to be addressed:
Protocol placement and inter-tenant isolation.
Protocol Placement: The system-wide data-movement facil-

ity must be device-independent, but must interface with concrete
devices. Therefore, protocol logic that drives the system-wide device-
independent facility is necessary and must run somewhere. This
logic also must interface with the concrete devices and therefore
implement device-specific logic. Depending on the physical place-
ment of the protocol code, the distance and therefore the latency
between application, protocol logic, and device will differ. In this
paper, we present an initial discussion of placement options for this
logic (Section 2), from centralized to fully distributed.
Tenant Isolation: The second challenge is the combination of

direct device-to-device data movement with a strong underlying
security and isolation model. In datacenters, tenants must only have
access to specific accelerators out of larger pools. Tenants may even
space-share the same accelerator.When such devices or device slices
communicate directly with each other, the transitive closure accessi-
ble to the tenant must still be constrained. As data flows become less
centralized andCPU-focused, isolation enforcement becomes harder.
We present requirements and challenges for the security of device-
independent data movement (Section 3) and sketch a way forward.

RelatedWork: Similar problemshave been addressed in different
contexts, such as M3 [2, 3] for systems-on-chip and FractOS [12] for
SmartNIC-based networks. We are investigating this problem in the
context of CXL. CXL is interesting, because it combines datacenter-
scale connectivitywith directly attached accelerators due to its PCIe-
based nature. M3 also supports accelerators directly, but only offers
on-chip connectivity. FractOS is a datacenter protocol, but relies on
SmartNICs and regular servers to attach accelerators. CXL however
currently lacks our postulated device-independent data movement
facility. We quantify the potential gains of adding disaggregation-
native devices to CXL (Section 4).

2 DATA STREAMPROTOCOL PLACEMENT
Combining multiple devices (accelerators, storage devices, network
interface cards, etc.) to form pipelines or graphs of computation
requires a protocol between the application and the used devices. In
this work, we focus on the question of where such a protocol should
be executed rather than how the protocol should be designed. We
consider three different options as depicted in Figure 1.

2.1 Application-Side Protocol
The first option constitutes the established status quo in disaggre-
gateddatacenters.Theapplication runson itsmachineandhasaccess
to a device pool via the CXL fabric. For simplicity, we only show a

https://orcid.org/0000-0002-4232-4519
https://orcid.org/0000-0002-2416-6537


Asmussen et al.

DeviceDevice

App
Proto

Device Device Device

CPU

App

Proto
Device

Device Device Device

App

Proto Proto

ProtoProto

Device Device

Figure 1: Different options for executing a protocol between application and devices: application-side protocol (left), central
resource-side protocol (center), and distributed resource-side protocol (right). The dashed lines indicatemachine boundaries.

single pool with heterogeneous devices. The devices could also be
distributed among multiple pools. With this option, the devices do
not need to speak a common protocol, but can each have their own
device-specific protocol,whichneeds to be knownby the application.
In particular, the devices are not expected to know how to talk to
one another. The application therefore communicates with each de-
vice individually using the expected protocol. Allowing applications
direct access to individual devices requires means on the device side
to ensure that tenants stay within the desired boundaries and are
isolated from other tenants.

This variant therefore requires more hops during the communica-
tion in comparison to a direct communication between devices. As
depicted in Figure 1, if the application wants to start the processing
on the yellow device, it needs to copy the input data to the yellow
device and trigger the start of the computation. Afterwards the appli-
cation needs to first retrieve the output data from the yellow device
back to its memory and can only afterwards copy this data as input
data to the pink device. All of these steps cross themachine boundary
between the application and the resource pool, further increasing
the overall latency.

2.2 Central Resource-Side Protocol
The second option executes the protocol within the resource pool,
centrally on a CPU. This CPU exclusively runs protocol code rather
than application logic. This software knows the individual protocols
expected by the individual devices, but the application only needs
to know how to talk to the CPU. As before, the devices might be dis-
tributed among multiple pools, each with a CPU to control them. In
this case the application would need to communicate with multiple
CPUs and these in turn with their controlled devices.
Like for the application-side protocol, the central resource-side

protocol does not require devices to use a common protocol as only
the CPU needs to know how to access the devices. In contrast to the
application-side protocol, applications do not access devices directly
and thus the infrastructure does not require any means to securely
grant such access. Access restrictions and isolation of individual
tenants can simply be enforced by the CPU when performing de-
vice access on behalf of applications. However, this approach still
suffers in terms of latency with increasing number of devices that
collaborate. This is because the CPU still needs to access each device
individually as devices cannot directly communicatewith each other.
Furthermore, the CPU plays the role of an intermediary within each
resource pool, also leading to increased latency, in particular with
multiple pools involved.

2.3 Distributed Resource-Side Protocol
The final variant executes the protocol in a distributed fashion on
the devices. Programmable accelerators such as GPUs can execute
the protocol as part of the application logic. Other devices such as
SSDs already employ a processor next to the device, which can be
used to execute communication protocols. Alternatively, a processor
or a fixed-function logic block can be added next to the device to
execute the protocol. If the protocol is implemented in software, it is
imaginable to allow applications to deploy the desired protocol onto
the devices. Custom protocols can provide more flexibility and/or
efficiency at the cost of more complexity on the device side to ensure
isolation between tenants.
Executing the protocol on the devices themselves can lead to la-

tency reductions as it avoids an intermediary in the communication
and can benefit from a lower latency if multiple devices are located
within the same pool. For example, as depicted in Figure 1, the ap-
plication directly sends input to the yellow device, which in turn
sends the output directly to the pink device, which finally sends the
result back to the application. This variant therefore leads to the
least amount of hops and keeps the communication pool-local, if
possible, but requires all devices to understand the same protocol.

3 DISAGGREGATION-NATIVEDEVICES
Considering the different options in the previous section, we believe
that the distributed resource-side protocol is the most promising
candidate as it offers the lowest possible latency. We call devices
that communicate in a peer-to-peer fashion and without CPU in-
volvement disaggregation-native devices. We observe the following
requirements for such devices:

(1) Direct communication: To minimize communication over-
head, accelerators and other devices should communicate di-
rectly and avoid intermediaries such as the CPU in interactions.
This is particularly important for longer chains of accelerators,
where a star-shaped communication can lead to large overheads.
In any case, removing intermediaries from interactions can lead
to significant energy savings [2].

(2) Access restrictions:With a CPU-centric approach, mutually
distrusting tenants canbe isolated fromeachothervia traditional
means on the CPU (e.g, different address spaces and memory
mappings). However, direct communication between acceler-
ators demands that individual accelerators can be restricted.
These restrictions should be enforced externally instead of by
the accelerator itself (e.g., via IOMMUs) to avoid that all tenants
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Figure 2: System architecture ofM3: one DTU per tile isolates
tiles from each other and selectively allows communication
as configured by theM3 kernel. TileMuxmultiplexes its tile
among the applications on this tile.

need to trust all accelerators, which are typically provided by
third-party vendors.

(3) Generic or custom protocols: Combining different kinds of
accelerators and devices requires a common protocol instead
of the per-device-type protocols used today. This can be either
achieved by designing a generic protocol for data movement
that suites all desired use cases sufficiently well and can be im-
plemented by all accelerators. Alternatively, it is imaginable that
applications can bring their own protocol and load it onto the
participating accelerators.

(4) Protocol deployment:The protocols should be implementable
by different kinds of devices. For example, programmable ac-
celerators such as GPUs might not need additional hardware,
but can simply implement the protocol in software as part of
the application logic. Other accelerators might already use a co-
processor for internal management tasks and could implement
the protocol on the co-processor. Fixed-function accelerators
might want to introduce a co-processor for that purpose or im-
plement the protocol as a fixed-function logic block.

(5) Cross-machine communication: Ideally, accelerators and
devices should be able to interact with each other regardless
of their physical location. This requires that the same protocol
can be used even if one communication partner resides in a
different machine. However, due to the potentially different per-
formance characteristics, optimizing the placement or selection
of communication partners should be feasible.

3.1 M3 SystemArchitecture
Given these requirements, we believe that the M3 system architec-
ture [3] is a good starting point. Previously focused on system-on-
chips (SoCs), M3 builds upon a tiled hardware architecture [13] and
runs a custom tailored operating system on top, as shown in Fig-
ure 2. Most importantly, each tile is equipped with a new hardware
component called data transfer unit (DTU), which is used for cross-
tile messaging and memory accesses instead of relying on coherent
shared memory.

3.1.1 Heterogeneous Devices. M3was designed for heterogeneous
systems from the beginning and thus tried to minimize the assump-
tions on the individual devices. For that reason, the M3 kernel (red)
runs on a dedicated kernel tile and leaves the remaining user tiles
free for applications. User tiles therefore do not need OS support
(such as virtual memory or different privilege levels), simplifying
the integration of accelerators and other devices into user tiles. Nev-
ertheless, OS services such as file systems and network stacks are
available on all user tiles, because these are offered via DTU-based
communication protocols.

The M3 kernel manages the applications and OS services on user
tiles as activities, comparable to processes. An activity on a general-
purpose tile executes code, whereas an activity on an accelerator tile
uses the accelerator’s logic.

3.1.2 Access Restrictions. Supporting DTU-based communication
between user tiles requires the enforcement of access restrictions
by the DTU. For that reason, message passing and memory accesses
via DTU require an established communication channel (thick black
lines in the figure). Communication channels are represented as
endpoints in the DTU (orange dots). At runtime, each endpoint can
be configured to different endpoint types: A receive endpoint allows
to receive messages, a send endpoint allows to send messages to a
specific receive endpoint, and a memory endpoint allows to issue
DMA requests to tile-external memory.

Activities can use existing communication channels, but only the
M3 kernel is allowed to establish such channels. This is done via
capabilities like in other microkernel-based systems [7, 8, 11]. By
default, no communication channels exist and thus tiles are isolated
from each other. Additionally, applications are placed on different
tiles by default, but as shown byM3v [1], tiles with general-purpose
cores can also be shared efficiently and securely among multiple
applications. For that reason, every core-based user tile runs a multi-
plexer called TileMux (yellow), which is responsible for isolating and
scheduling the applications on its own tile, similar to a traditional
kernel. However, in contrast to a kernel, each TileMux instance has
no permissions beyond its own tile. Instead, only the M3 kernel can
make system-wide decisions, hence its name.

3.1.3 Direct Communication. The DTU is designed to support di-
rect communication between user tiles. For flexibility and efficiency
reasons, the DTU’s interface is therefore split into a control plane
and data plane. The control plane is used during the setup phase by
theM3kernel to establish the required communication channels. The
data plane is used by applications to use the previously established
communication channels. During the setup phase capabilities are
used to manage and distributed permissions in the system and also
to constrain the communication channels as desired. The constraints
are enforced by the DTU’s data plane.

3.1.4 Protocol Implementation. TheDTUprovidesmessage passing
and DMA-like memory accesses to implement arbitrary protocols
between activities. These mechanisms have been used in the past to
implement, for example, system calls, network access, and file access.
M3x has also shown with the so called File Protocol that such proto-
cols can be implemented both in software and as a fixed-function
logic block for simple accelerators. This design allows to combine
regular applications and accelerators in pipelines.
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3.2 Challenges
In summary, we believe that the building blocks provided by M3

are well suited for disaggregation-native devices. However, multiple
challenges and open questions remain.
(1) M3 is currently designed for SoCs and therefore optimized for a

low communication latency between tiles. Extending the system
to off-chip communication with PCIe or cross-machine commu-
nication with CXL will increase the latency and thus require
adaptions in hardware and software. For example, polling until
a message is delivered successfully might no longer be desirable.

(2) The M3 kernel currently manages the user tiles within the same
SoC from a dedicated kernel tile within that SoC. Moving to
disaggregation-native devices that do neither need nor desire
CPU cores raises the question whether the devices can be man-
aged externally (e.g., from a server with CPUs) by an equivalent
of the M3 kernel.

(3) Howaprotocol has to bedesigned to be efficient andgeneric is an
open question. Similarly, it is unclearwhether the system should
rather support the deployment of custom application-specified
protocols instead of implementing a single generic protocol.

4 EVALUATION
We intend to demonstrate the benefits of a distributed resource-
side protocol and study the suitability of M3 as a foundation for
disaggregation-native devices. We therefore perform experiments
based on the current state of M3, which is available as open source 1.

4.1 Measurement Setup
Weuse the gem5 platform [4] and take advantage of its customizabil-
ity toconfigure thesystemsimilar to futuredisaggregatedCXL-based
systems.We configure gem5 to simulate twomachines connected
over an interconnect and equip each machine with multiple locally
connected devices. As the exact performance characteristics of CXL
are still unknown, we optimistically assume rather low latencies,
because higher latencies further increase the latency benefit of the
distributed resource-side protocol. Concretely, we configure 1𝜇s
round-trip latency across the two machines and 500ns round-trip
latency within the machine. The latter is half of a typical round-trip
latency for PCIe gen 3 [5, 9].

The application runs on a CPU in the first machine and all devices
(and potential protocol CPUs) are located in the second machine,
acting as the resource pool. Since we focus on the protocol rather
than the accelerators or devices, we do not simulate actual accelera-
tors, but only their control cores. We conservatively use the in-order
RISC-VCPUmodel clocked at 1GHz for per-device control cores and
the out-of-order RISC-V CPUmodel with 4GHz for all other CPUs.
Higher-performance control cores are of course possible and would
benefit the distributed protocol.

4.2 Protocol Implementation
For simplicity and comparability, we use the same protocol imple-
mentation called data channel for all three protocol placements. Data
channels are employed between a sender and receiver and are in-
stantiated multiple times to form larger pipelines or graphs. The
1https://github.com/Barkhausen-Institut/M3
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Figure 3: Performance comparison of different protocol
placements using different data sizes.

sender pushes the data into the memory of the receiver and sends
a notification message at completion. The receiver waits for this no-
tification and sends a response to the sender when the data has been
processed. We use the data channel to build the three placements
as depicted in Figure 1. For example, with the client-side placement,
the client has two data channels to the yellow device (outbound and
inbound) and two data channels to the pink device.

4.3 Results
The benchmark is run with different data sizes and uses 50 repeti-
tions after 4 warm-up runs. As shown in Figure 3, the distributed
version achieves the best results and is between 45% and 67% faster
than the application-side version and 21% to 28% faster than the
centralized version. These results are of course preliminary due to
several unknowns about future CXL-based systems. However, due
to our conservative settings we believe we can still conclude that
speedups can be achieved by executing data movement protocols
in a distributed fashion on the devices themselves.
The measurements also revealed a shortcoming of the current

M3 platform: data transfers are performed in at most 4 KiB packets,
dictated by the page size. This approach works fine on SoCs with
fast on-chip networks, but is not well suited for interconnects with
higher latencies as used in this benchmark. For this reason, the inter-
connect latency is paid multiple times for the data sizes above 4 KiB
leading to a faster latency increase than strictly necessary.

5 CONCLUSION
Our experiments are based on simulation, but all parameters were
configured to not unduly benefit the distributed protocol imple-
mentation. Still, we see a significant latency benefit, leading us to
conclude that disaggregation-native devices are a logical next step
in datacenter disaggregation. M3 has demonstrated suitable security
primitives on the system-on-chip level. It remains open, how these
primitives can be mapped to CXL fabrics and which features of CXL
must be augmented to integrate disaggregation-native devices with
strong yet decentralized inter-tenant isolation mechanisms.
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