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ABSTRACT
This paper describes a distributed implementation of Apache Arrow
that can leverage cluster-shared load-store addressablememory that
is hardware-coherent only within each node. The implementation is
built on the ThymesisFlow prototype that leverages the OpenCAPI
interface to create a shared address space across a cluster. While
Apache Arrow structures are immutable, simplifying their use in
a cluster shared memory, this paper creates distributed Apache
Arrow tables and makes them accessible in each node.
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1 INTRODUCTION
Unlike compute resources, that can be flexibly traded off against
performance, main memory in each node in a cluster must be provi-
sioned for aworst case to achieve prevent severe performance degra-
dation. In addition, to prevent jobs from being inadvertently killed
because they ran out of memory users often over-estimate their
memory requirements. The result is internal fragmentation and
significant memory under-utilization. A study by Google into its
Borg clusters reveals that only around 40% of memory is used [17],
and a study by Microsoft shows 50% of VMs never touch 50% of
their memory [9]. Considering that memory is one of the largest
and growing contributors to the total cost of a server [4], it is clear
that systems capable of sharing memory nodes across a cluster
could be a major cost saver.

The ThymesisFlow [13] prototype enables byte-addressable
shared memory regions between nodes in a cluster, completely
transparent to the application. In other software RDMA imple-
mentations such as FastSwap [5], memory is copied/swapped to
local memory, while ThymesisFlow memory stays in one place and
transactions are sent to that memory. All data can be load-store ac-
cessed and cached locally, speeding up repeated accesses to remote
memory locations. While built leveraging the OpenCAPI interfaces,
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ThymesisFlow does break with the OpenCAPI goal of being fully
cache coherent as cached instances of accessed remote memory
locations will not be updated when the remote node invalidates the
cache.

We propose to use the in-memory format of Apache Arrow [1].
Arrow allows for various applications to access the same data,
without copying and without serializing any data [3, 12]. The key
aspect we utilize is that most Arrow objects, once instantiated, are
immutable and thus the missing cache coherency is not a problem
with read-only access. This work extends Arrow’s ability to be
readable by multiple applications on the same machine, to multi-
ple machines connected with ThymesisFlow. Accessing the shared
memory through the Arrow API allows ensuring memory consis-
tency, while allowing applications to leverage the shared memory
without worrying about cache coherence. Our implementation ex-
tending Apache Arrow is open-source and available on github [7].

2 BACKGROUND
Scaling workloads can fundamentally be done in a vertical or hori-
zontal fashion. The former is done by adding resources in a single
large SMP system with multiple CPU-sockets coherently intercon-
nected. However, this type of system has its limitations: maintaining
coherence of the caches leads to performance problems due to la-
tency and bandwidth overheads of the coherency protocol. These
limitations are addressed with horizontal scaling where resources
are available in the form of networked clusters of servers with e.g.
Ethernet as the interconnect. However, in those clusters the cost of
communication is significantly higher than in SMP systems [10].
Consequently, workloads with tightly coupled communication are
better suited for vertical scaling, whereas the opposite is true for
horizontal scaling [8]. By combining ThymesisFlow with Apache
Arrow, this paper minimizes data copy bottlenecks which currently
hinder efficient communication between server nodes.

2.1 Zero-copy, zero-serialization
In a coordinated compute cluster, the classical approach to data
transfer involves a serialization step, broadcasting the data to every
node through the network, and then de-serializing it into a format
known to the local machine. These might be expensive operations,
e.g. if pointers need to be resolved and converted to relative offsets.
To enhance traditional data transfer methods, a logical progression
is to establish a "common language" for systems to communicate
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Figure 1: High-level system components. Arrow as a user
library, ThymesisFlow connecting the two OpenCAPI busses
together allowing for remote memory accesses.

in. The goal is to have a uniform in-memory data format. Apache
Arrow aims to achieve this standardization.

Previous work on this topic [2] succeeded in integrating Apache
Arrow with ThymesisFlow using the Plasma object store, thereby
enabling transparent data communication across multiple compute
nodes. However, the use of Plasma requires extra copy operations,
which reduces efficiency.

This work eliminates the need for serialization and reduces the
cost of copy operations. As shown in Figure 1, this is done by
leveraging the load-store based sharing of node memory across
systems offered by ThymesisFlow. A concept we call cluster shared
memory can be utilized to eliminate copy operations, introducing a
zero-copy paradigm underpinning the zero-serialization paradigm
formulated by Arrow.

2.2 Cluster shared memory
This paper introduces the new term cluster shared memory (CSM)
to describe a system that shares memory addresses across a cluster.
Depending on how cache coherence is enforced, we can define
three levels of CSM:

• Non-coherent CSM (NC-CSM): this refers to memory shar-
ing without any coherence guarantees.

• Locally-coherent CSM (LC-CSM): this refers to enforcing
cache coherence on individual nodes only. Our work targets
LC-CSM clusters.

• Globally-coherent CSM (GC-CSM): this refers to enforcing
cache coherence at the cluster level.

2.3 ThymesisFlow
ThymesisFlow is an open-source HW/SW co-designed memory dis-
aggregation prototype. A ThymesisFlow system supports memory
lending and borrowing across nodes. A lender may transparently
map parts of a borrower’s main memory into its local physical ad-
dress space, as if additional memory modules were plugged into
the lender. It does this using an FPGA-based NICs attached to the
Power9 OpenCAPI bus. In the prototype, the connection between
the two machines is a 100Gib/s link, with an effective bandwidth
up to ∼10GiB/s [13] and a RTT latency of ∼650ns [16].

Using the OpenCAPI connection allows for communication be-
tween connected devices in a partially cache coherent fashion. This
paper focuses on a scenario where both the lender and borrower
access the shared memory with concurrent read and write accesses.
When a borrower reads from a lender’s memory, first the borrower

CPU cache is accessed, then the read is sent through the Thymesis-
Flow link, then the lender cache is snooped through the OpenCAPI
bus, and finally if both caches miss, the actual memory is read.
Because this setup shares architecture with local memory accesses,
CPU features such as memory pre-fetching, out-of-order processing
and pipelining are still active for remote memory [18]. However,
while memory is coherent within the node, it is not coherent across
nodes. In the methodology section of this paper, we outline solu-
tions to these cache coherency issues.

In Power10 the concept of Memory Inception was announced,
which also enables disaggregated memory sharing in a cluster. With
Memory Inception, the memory latency is expected to be signifi-
cantly lower than ThymesisFlow, with only 50-to-100 nanoseconds
of additional latency incurred through the link [14]. Additionally,
with the OpenCAPI standard integrated into CXL [6, 15] and CXL 3
offering memory pooling functionality among several systems, our
approach promises to inspire comparable configurations on other
platforms.

2.4 Apache Arrow
Apache Arrow is an in-memory data format specification for tab-
ular data organized in columnar structures, with corresponding
libraries for various popular programming languages. It supports
many different data types, including complex ones such as dictio-
naries, nested and variable-length data. The power of the Arrow
format lies in its in-memory data layout, which allows for interoper-
ability of objects between different applications. It enables a Python
program to create a dataset, hand the metadata to another appli-
cation implemented in a different programming language, which
is then able to read the data without marshaling or serialization,
or even copying the data itself. Finally, Apache Arrow tables use
offsets rather than pointers.

Apache Arrow objects, once instantiated, are immutable. Modi-
fying data requires creating a new object. The structure in which
Arrow encodes arrays is called a RecordBatch. The structure of a
RecordBatch is encapsulated in the library supporting each lan-
guage, and not part of the location agnostic data format. For ex-
ample, in the Arrow C++ library, the RecordBatch is implemented
as a class instance, and Arrow Arrays are stored with the C++
std::vector type. Every node reading the data will need to instan-
tiate its platforms Arrow library with this data. In Section 3.1, we
describe how we serialize the structure and references of columnar
data.

3 METHODOLOGY
3.1 Serializing Arrow columnar structure
Apache Arrow already contains methods for serializing a full ta-
ble, including the data itself, into a buffer, this is done using the
RecordBatchWriter and RecordBatchReader IPCmethods, useful for
copying objects between nodes. However, these IPC API calls are
not zero-copy and will write data into a new buffer, and move it to
a shareable location. To be able to serialize only the table descriptor
of an Arrow object, we modify the IPC API of Arrow to not include
the data, only the table descriptor and a reference to the data.

The data itself does not need to be copied, as it is placed in a
globally accessible shared memory When another node wants to
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access the table, it only needs to serialize, send, and de-serialize
the structure and reference information. Because ThymesisFlow
allows for creating a shared address space across nodes where every
address uniquely designates memory, all the pointers to the data
remain valid. This way, no extensive redesign of Arrow is necessary,
as the general structure of the code base to instantiate objects is
kept intact.

3.2 Flushing CPU caches before invalidity
We need to take care when creating new Arrow objects that are
accessible by other nodes. When CPU caches are populated with
data of a certain memory region, and another CPU writes to that
region, only the writer’s CPU cache will be updated. This poses a
problem when the CPUs with incorrect cache entries try to read
data, their request will hit only their local cache, not reading the
newly updated remote memory. Thus, we need to first invalidate the
caches of all CPUs, so that the caches become up to date when they
query the newly updated memory. Power9 processors, however, do
not support cache invalidation and data cache flush instructions
must be used instead. We use the dcbi instruction to flush single
128-byte cachelines.

Flushing, however, may change the backing memory. For the
purpose of emptying cache-lines we use flushing operations on all
CPUs in a cluster to empty the relevant caches of memory regions.
We execute the flush operations before we write the actual wanted
data, allowing for the new data to then be repopulated in all the
CPU caches on reads.

Power9 has an out-of-order instruction execution unit. To en-
sure no calculations are done before all memory blocks have been
flushed, we add memory barriers before and after all flushing oper-
ations. We do not need to place the barriers between every flush
operation, as we do not care if individual flush instructions are
swapped.

After the initialization of an object has finished, we do no longer
need to worry about cache coherency. The Apache Arrow format
guarantees that created objects are immutable. Thus, when the
data is written to the memory, and all CPU caches are made to
be coherent once, any and all reads afterwards will update the
CPU caches with up-to-date data. Arrow will guarantee no writes
happen to the region, and we thus do not need to make the system
coherent again. The expensive invalidate operations only happen
during initialization of the data, during reading of the data we have
no overhead except refetching data into local CPU caches.

A typical flow for creating an Arrow object on shared memory
looks like this:

• Allocation: memory owning node allocates buffer and
passes address to requesting node

• Clear cache-lines: all processors will flush their caches of
the requested memory region

• Write into memory: any processor in the cluster writes the
data to the shared memory region.

• Flush when not local: if the processor has written to mem-
ory it does not own, it must flush its CPU cache to ensure
the data is actually written to the remote memory.

• Coherent reading: any processors which read this newly
created memory region will not have local caches of this

region. Subsequent reads will thus populate the CPU cache
with up-to-date values.

3.3 Preventing Address Translation by mapping
regions to the same address on every node

Even though the Arrow data itself does not contain any absolute
pointers, the metadata does. This includes metadata containing
absolute pointers to memory where the data buffers are stored.
Therefore to transfer information where an Arrow object is stored,
all pointers to data buffers would have to be updated with the new
location where data is mapped. To ease this process, we map every
memory region to the exact same location in every node. We do this
using the Linuxmmap flag MAP_FIXED. This flag tells the kernel that
the address passed is not a suggestion, but an exact requirement
where the region is mapped to. There are caveats to this, since we
need to make sure on each participating process that the requested
region in virtual memory is actually free and available to map,
otherwise the mmap call will fail.

3.4 Allocating in custom memory regions
In a standard application, malloc and its family of functions only
give the application limited control where memory is mapped.
When a user calls malloc, the c library decides if the currently
available heap space is sufficient to satisfy the new request. If the
current heap is not big enough, more pages may be requested from
the kernel using the brk and sbrk syscalls, or the c library may
decide to map pages directly using mmap for large allocations. We
cannot however instruct malloc to allocate in a certain memory
region.

For this reason, we extended Apache Arrow to include a memory
manager. The manager allows for defining custom memory regions
that are made available to malloc to satisfy allocation requests from.

3.5 Remote memory allocations
We choose an architecture where the CPU that owns the backing
memory is responsible for handling allocations and cache behaviors.
We chose this to prevent race conditions, and to have only one CPU
be responsible for managing the malloc data structures. Concretely,
this means that when a remote node wants to write to local memory,
it will have to first request memory from the owning node. The
owning node will then call local malloc methods and return the
allocated address to the remote node.

This architecture allows for any node in a cluster to write to any
other node. The result is an architecture where a single node writes
data to all other nodes, not only nodes writing to their own local
memory. Some applications are:

• One node writes a dataset to all other nodes.
• In a big data pipeline, we can have the result of one stage

be immediately written to the memory of the next stage.

3.6 Spanning Tables across nodes
Arrow allows for creating not only contiguous columnar data such
as a RecordBatch, but also columnar data which has non-contiguous
columns called Tables. Unlike RecordBatches which contain Ar-
rays which guarantee contiguous memory buffers, Tables contain
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Table 1: Time to initialize table in remote memory (1GiB
of data, uint64 elements). For reference a simple gRPC call
takes on average 3.3ms.

Component Time avg [ms]
Malloc request (gRPC) 4.99
Remote pre-write flush (gRPC call + flush) 51.84
Write to remote memory 180
Flush local write cache to remote 60.32
Serialize table descriptor 0.058
Send table descriptor to other nodes 3.23
Total 300.44

ChunkedArrays. ChunkedArrays may contain multiple contigu-
ous Arrays, making the non-contiguous Chunked Array. Chunked
Arrays are not part of the Arrow memory format, but rather is a
library abstraction on top of the Array memory format spec.

With Arrow data being accessible to every other node in a cluster
we can use the ChunkedArray abstraction to split one big array
across multiple nodes. Every node will contain an Array with a
contiguous memory buffer belonging to it. After which we create a
single ChunkedArray which contains the Arrays of all the nodes.
From a user application perspective, we can now use any Arrow
supported compute function, and index any data in the array as if
it is local. Arrow will resolve an index to a pointer location, which
ThymesisFlow will then transparently hand off to the relevant node.

The power here is that we can have columnar data bigger than a
single node, without having to share data in between nodes. Data
is stored only once, and every node can access the data using its
own memory instructions making use of CPU caches.

4 RESULTS
Introducing Apache Arrow promises to be a suitable candidate for
managing the pitfalls of LC-CSM. However, managing the shared
memory introduces some overhead during the allocation and man-
agement of objects. In particular:

• Communication between nodes to exchange metadata
• Cache flushing before and after object initialization
• Serialization and de-serialization of table descriptors
• Communication during remote memory allocations

However, we believe these effects are outweighed by the scal-
ability benefits gained by eliminating transfers of large datasets
over the network. Specifically we measured the initialization times
as seen in Table 1. The total time it takes to create a 1GiB table
in remote memory takes 300.44𝑚𝑠 on average, of which 118𝑚𝑠 is
overhead. Flushing the cachelines of every node takes the longest,
as the flushing is done on a per 128-byte cacheline basis, and every
flushed line potentially needs to be written to remote memory.

In our LC-CSM testbed built upon a ThymesisFlow installation,
we compared our implementation to a standard ethernet transfer of
shared data in a cluster. Figure 2 shows that the time spent copying
a dataset over ethernet is eliminated by utilizing the disaggregated
memory. Only the metadata needs to be transferred over the ether-
net link, which allows orders of magnitude faster sharing between
nodes.

After the transfer of the metadata, the data is fully and transpar-
ently available to the application with a cache-line granularity over
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the ThymesisFlow link, albeit with a penalty to memory latency
and throughput, which becomes the limiting factor. To quantify the
impact of LC-CSM on performance, we ran a series of experiments
with strided read and write accesses to the remote data, shown
in Figure 3. These strided access patterns are common for data
analytics pipelines and are a good indicator for the performance
penalty incurred by accessing remote memory [11]. An expected
decrease in throughput is measured for an increase in stride size.
We theorize this is because more 128-byte transactions need to
be done, saturating the ThymesisFlow bus quicker, but also the
memory pre-fetching units in the processor may be less able to
predict future memory accesses. Comparing the remote to local
memory accesses show that remote memory is considerable more
limited in maximum throughput, although for a very large stride
the difference is considerably less.

In conclusion, we have shown that it is feasible to utilize Apache
Arrow for bridging the gap between non-cache-coherent nodes
in a LC-CSM setup, maintaining memory consistency as well as
flexibility of implementation. While the Arrow interface as well
as the ThymesisFlow link do pose some restrictions regarding ef-
ficiency, overhead and throughput, we have shown that Arrow is
well equipped to become a stepping stone towards facilitating the
sharing of large data sets in a shared memory cluster.
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