
Storage cluster for persistency,
CXL pools for caching
Karim Manaouil*, Ji Zhang, Yang Zhe, Zhou Xing Wang,

Shai Bergman, Antonio Barbalace*

HCDS 2025

*

A
p
p

L
in

u
x

L
in

u
x

A
p
p

L
in

u
x

Compute nodes Storage cluster

L
in

u
x

Background: applications and storage

• Modern applications requires
efficient storage data access

• High bandwidth, Low latency

• Hyperscalers separate compute nodes
from storage nodes

• Data loading overhead

• Software caches play a key role
• Require additional server (cost, power)

• Data duplication at multiple different levels
(wasted memory)

• Additional data transfers (overheads)

• Increases latencies (time)

• Etc.

ca
c
h
e

P
a
g
e

C
a
ch

e

P
a
g
e

C
a
ch

e

ca
c
h
e

P
a
g
e

C
a
ch

e

P
a
g
e

C
a
ch

e

Background: emerging CXL hardware

• CXL built on PCIe

• Enables disaggregated

memory in data centers

• Enables inter-machine

memory sharing

• HW/SW coherent

• Byte-addressable access

with latencies comparable to

remote NUMA memory

host
CPU A

complex

PCIe/CXL
root

c
a
c
h
e

mem

host
CPU B

complex

PCIe/CXL
root

c

a
c
h
e

Mem

PCIe/CXL

switch

PCIe/CXL

EP
mem

Memory node

App
A

App
B

Shared
Data

Idea: Storage Cache on CXL Shared Memory

Investigate CXL shared memory pools as a data cache tier in data center clusters

• Eliminate caching servers

• Reduce data

replication/duplication

• Minimize data transfers

• Reduce latency

• Etc.

host
CPU A

complex

PCIe/CXL
root

c

a
c
h
e

mem

host
CPU B

complex

PCIe/CXL
root

c
a
c
h
e

mem

PCIe/CXL
switch

PCIe/CXL
EP

mem

Memory node

shared
page cache

private
page
cache

App
A

App
B

private
page
cache

App B
page cache

App A
page cache

Is it worth using CXL to cache
storage data?

Any problem doing that?

… but we don’t have any CXL switch …

Prototype: multiple NUMA + CXL + KVM + virtiofsd

Host Machine: Dual

Socket AMD EPYC 4th Gen
9224 (48 cores) and 4

NUMA (2!), Debian Trixie

virtio
fsd

Host OS
Host

Page cache

NVMe
storage

DDR mem
NUMA node a

DDR mem
NUMA node c

CXL
mem

DDR mem
NUMA node b

DDR mem
NUMA node d

CPUs socket 0 CPUs socket 1

768GB DDR 104GB/s (105 – 200ns)

128GB CXL 17.5GB/s (278 – 363ns)

SATA
storage

4TB 5400RPM Seagate

SATA 145MB/s
512GB Samsung 970P
NVMe 3.4GB/s

Virtual Machine:

32GB RAM, 12
vCPUs, Ubuntu 22.04Guest OS B

App App

Guest VM B

Guest
Page cache

Guest OS A

App App

Guest VM A

Guest
Page cache

fio

Benefits of Caching

• virtiofsd

• SATA

• Without caching 84.4MB/s

• With caching 38GB/s

• NVMe

• Without caching 2.45GB/s

• With caching 38GB/s

• Takeaway

• Caching matters (as expected)

Host Machine

Guest VM A

Guest OS A

Host OS

App App

DDR mem

Guest VM A
page cache

Host page
cache

Benefits of a Caching with File Sharing

• virtiofsd

• SATA

• Without caching 145MB/s

• With caching 70GB/s

• NVMe

• Without caching 3.4GB/s

• With caching 70GB/s

• Takeaway

• File sharing further improves the
achievable bandwidth

Host Machine

Guest VM A Guest VM B

Guest OS A

Host OS

Guest OS B

App App App App

DDR mem

Guest VM A
page cache

Guest VM B
page cache

Host page
cache

Caching on DDR vs CXL

• virtiofsd DAX (shared host page cache)

• SATA

• Caching on DDR 70GB/s

• Caching on CXL 17.4GB/s

• NVMe

• Caching on DDR 70GB/s

• Caching on CXL 17.4GB/s

• Takeaway

• The bandwidth (and latency) are
constrained by the CXL device

Host Machine

Guest VM A Guest VM B

Guest OS A

Host OS

Guest OS B

App App App App

DDR memCXL mem
Host
page
cache

Guest VM
A page
cache

Guest VM
B page
cache

Host Machine

Guest VM A Guest VM B

Guest OS A

Host OS

Guest OS B

App App App App

DDR mem
Host
page
cache

Guest VM
A page
cache

Guest VM
B page
cache

Idea Solution

• Hybrid DDR-CXL shared page cache

• Dynamically

• Promote frequently accesses
chunks to DDR

• Demote less frequently accessed
chunks to CXL

• Kernel page cache extension

Guest VM A
page cache

DDR mem

Host Machine

Guest VM A Guest VM B

Guest OS A

Host OS

Guest OS B

App App App App

CXL
mem

Host page
cache

Host page
cache

Guest VM B
page cache

Implementation/Evaluation

• Implement Linux kernel patch that
allocates files either

• CXL memory

• “Shared” files – a single copy

• DDR memory

• “Private” files – one copy per VM

• Set of Python script to control
experiments

• Evaluate Hybrid CXL+DDR

• Hot data in DDR memory

• “Private” files simulate promoted
data

• Cold/shared data in CXL memory

• Sharerd simulated demoted data

• Simulate Dynamic

• Vary the amount of shared vs
private files

• Vary the access frequency of each
file (Theta)

• Theta=0.0 no skew, uniform access

Results: CXL-only vs DDR-only page-cache allocation

● CXL-only

○ BW capped by CXL expander

● DDR-only

● Theta=0.0 low BW because of page reclaim

● Increasing Theta, increases hit, reduces reclaim

CXL-only DDR-only

Results: Varying CXL vs DDR page-cache allocation

● Hybrid caching achieves higher BW (up to 25GB/s)

○ CXL memory
○ Avoids OS page reclaim

○ DDR memory
○ Faster access

CXL-only DDR-only

Summary

• We explore CXL shared memory pool as a storage data cache

• Using virtualization (KVM), virtiofsd, NUMA, a CXL memory expander

• We show that it is a viable solution

• But a naïve approach of just moving the page cache to CXL may affect performance

• We proposed a dynamic hybrid approach DDR+CXL page cache

• We tested hybrid, for multiple scenarios

• Several open research questions

• Do results hold with real hardware? How to automatize page cache placement,
promotion and demotion? Consistency with shared and private copies? How to exploit
CXL3.0 HW CC? How to integrate with cluster storage packages? Etc.

Thank you!

karim.manaouil@ed.ac.uk, antonio.barbalace@ed.ac.uk, shai.aviram.bergman@huawei.com

mailto:karim.manaouil@ed.ac.uk
mailto:antonio.barbalace@ed.ac.uk
mailto:shai.aviram.bergman@huawei.com

End

Idea Solution

• CXL is better than attached-storage or network attached-
cache

• Doesn’t require an additional full-fledged server

• Cannot match the performance of memory

• But local memory is limited in size (and costly) and cannot
be shared

• Summary: for performance, just moving the page cache to
CXL is not sufficient

• Solution:

• In-kernel page cache extension

• Dynamic mechanism for caching data promotion and
demotion at runtime

• Promote frequently accesses chunks from CXL to
local memory

• Demote less frequently accessed chunks to CXL

• Research questions:
• How to reengineer Linux and similar

• How to make this dynamic?

Guest VM A
page cache

DDR mem

Host Machine

Guest VM A Guest VM B

Guest OS A

Host OS

Guest OS B

App App App App

CXL
mem

Host page
cache

Guest VM B
page cache

Host page
cache

Prototype

• However, CXL switches aren’t available to us, we use

• A multi-NUMA machine with a CXL memory

expander

• VMs running on different NUMA nodes

• Shared page cache is allocated on CXL memory.

• We use virtiofsd which allows VMs to share the host’s

page cache by mapping it directly into guests.

Guest OS B

App App

Guest VM B

Guest
Page cache

Guest OS A

Host OS

App App

virt
iof
sd

Guest VM A

Guest
Page cache

Host
Page cache

NVMe
storage

DDR mem
NUMA node a

DDR mem
NUMA node c

CXL
mem

DDR mem
NUMA node b

DDR mem
NUMA node d

CPUs socket 0 CPUs socket 1

768GB DDR 104GB/s

(105 – 200ns)
128GB CXL 17.5GB/s

(278 – 363ns)

SATA
storage

4TB 5400RPM Seagate SATA

512GB Samsung 970P NVMe

Prototype

• However, CXL switches aren’t available to us, we use

• A multi-NUMA machine with a CXL memory

expander

• VMs running on different NUMA nodes

• Shared page cache is allocated on CXL memory.

• We use virtiofsd which allows VMs to share the host’s

page cache by mapping it directly into guests.

• Our goal: use CXL memory to host a shared kernel-level

page cache across kernel instances.

Guest OS B

App App

Guest VM B

Guest
Page cache

Guest OS A

Host OS

App App

virt
iof
sd

Guest VM A

Guest
Page cache

Host
Page cache

storage

DDR mem
NUMA node a

DDR mem
NUMA node c

CXL
mem

DDR mem
NUMA node b

DDR mem
NUMA node d

CPUs socket 0 CPUs socket 1

Results: CXL-only vs DDR-only page-cache allocation

● CXL-only

○ Bandwidth is capped by CXL expander at

17GB/s

● DDR-only

● With a uniform distribution, BW is low because of

reclaim activity

○ The more skewed the access distribution, the

higher the BW (more page cache hits)

● To avoid reclaim and achieve acceptable BW, we

must dynamically size the shared and private page

caches

CXL-only DDR-only

Implementation/Evaluation

• So far, relayed on virtiofsd

• Developed Linux kernel patch that
allocates files either

• CXL memory

• “Shared” files – a single copy

• DDR memory

• “Private” files – one copy per VM

• This doesn’t simulate dynamic
behaviour

• Evaluate Idea Solution

• Hot data in DDR memory

• “Private” files simulate promoted
data

• Cold/shared data in CXL memory

• Sharerd simulated demoted data

• Vary the amount of shared vs
private files

• Vary the access frequency of each
file (Theta)

• Theta=0.0 no skew, uniform access

Solution is not dynamic, we

only simulate different
dynamic conditions

We focus on the hybrid part here

	Slide 1: Storage cluster for persistency, CXL pools for caching
	Slide 2: Background: applications and storage
	Slide 3: Background: emerging CXL hardware
	Slide 4: Idea: Storage Cache on CXL Shared Memory
	Slide 5: Is it worth using CXL to cache storage data? Any problem doing that?
	Slide 6: Prototype: multiple NUMA + CXL + KVM + virtiofsd
	Slide 7: Benefits of Caching
	Slide 8: Benefits of a Caching with File Sharing
	Slide 9: Caching on DDR vs CXL
	Slide 10: Idea Solution
	Slide 11: Implementation/Evaluation
	Slide 12: Results: CXL-only vs DDR-only page-cache allocation
	Slide 13: Results: Varying CXL vs DDR page-cache allocation
	Slide 14: Summary
	Slide 15: End
	Slide 16: Idea Solution
	Slide 17: Prototype
	Slide 18: Prototype
	Slide 19: Results: CXL-only vs DDR-only page-cache allocation
	Slide 20: Implementation/Evaluation

