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Introduction - Serverless Computing
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An emerging Cloud Computing paradigm

A growing market: 44.7 USD Billion by 2029

A step closer to the promises of Cloud:

● Fully-managed by Cloud providers (AWS, Google, MS 

Azure).

● Pay-per-use (ms-scale)

● Elasticity (Demand-driven scale-out)

Serverless Computing Report, Markets and Markets Report 
https://www.marketsandmarkets.com/Market-Reports/server
less-computing-market-217021547.html
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Introduction - Serverless Computing
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When a request arrives:

1. Initialization: Execution environment is initialized (If no 
function instance is available).

2. Function execution: Functions usually receive/send their 
inputs/outputs from/to remote storage. Memory footprint 
temporarily increases..

3. Keep-Alive Phase: Function will remain idle (to avoid cold 
starts)

4. Graceful Termination
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Introduction - Memory Disaggregation

▪ Memory 
over-provisioning

Full CPU 
utilization

Memory 
fragmentation

Unallocated 
Memory

Memory Stranding [1]

[1] Li, Huaicheng, et al. "Pond: Cxl-based memory pooling systems for cloud platforms." Proceedings of the 28th ACM International Conference on 
Architectural Support for Programming Languages and Operating Systems, Volume 2. 2023.

● Traditional cluster setups lead to resource fragmentation at scale, where CPU 
and memory resources are underutilized.

● Memory disaggregation addresses this by decoupling memory from compute 
nodes, treating it as an elastic, shared pool that can be dynamically allocated 
and rebalanced across clusters.
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Related Work on Elastic Memory

FaaSMem [1]: Focus on 
initialization phase allocations

Memory Harvesting VMs [2]: 
Right-sizes the memory allocated 
by VMs

Adrias [3], Pond [4]: Select local or 
remote memory binding to 
improve resource efficiency 

Elastic Memory for Serverless Functions

[1] Xu, Chuhao, et al. "Faasmem: Improving memory efficiency of serverless computing with memory pool architecture." Proceedings of the 29th ACM International Conference on 
Architectural Support for Programming Languages and Operating Systems, Volume 3. 2024.
[2] Fuerst, Alexander, et al. "Memory-harvesting vms in cloud platforms." Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages 
and Operating Systems. 2022.
[3] Masouros, Dimosthenis, et al. "Adrias: Interference-aware memory orchestration for disaggregated cloud infrastructures." 2023 IEEE International Symposium on High-Performance 
Computer Architecture (HPCA). IEEE, 2023.
[4] Li, Huaicheng, et al. "Pond: Cxl-based memory pooling systems for cloud platforms." Proceedings of the 28th ACM International Conference on Architectural Support for 
Programming Languages and Operating Systems, Volume 2. 2023.

The goal of this work is to explore, and leverage an 
expanded, per-function memory configuration 
space to increase resource efficiency of serverless 
deployments in datacenters.

Specifically:
● Allocate different portions of memory locally.
● Consider the entire function lifecycle
● Use footprint-latency Pareto optimal solutions 

for request-level optimizations.
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Elastic Memory for Serverless Functions

● Measure impact of remote memory allocations on the performance of 4 serverless functions from SeBs [1]
● Our system uses Intel Optane Persistent Memory, configured as a zero-CPU NUMA node.
● Varying input size and local/remote memory allocation ratio between 0 (fully remote) and 1 (fully local).

[1] Copik, Marcin, et al. "Sebs: A serverless benchmark suite for function-as-a-service computing." Proceedings of the 22nd International Middleware Conference. 
2021.



Microlab, NTUA 8

Elastic Memory for Serverless Functions

[1] Copik, Marcin, et al. "Sebs: A serverless benchmark suite for function-as-a-service computing." Proceedings of the 22nd International Middleware Conference. 
2021.

6%-21% increase 4%-85% increase

Impact on latency varies per benchmark

up to 284%noisy/unaffected
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Elastic Memory for Serverless Functions
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Elastic Memory for Serverless Functions

Impact on latency is counterintuitive. 
For example in vision model inference serving (ResNet50):

● Execution phase stages: Image preprocessing -> Inference

● Stages contribution to execution latency: Larger images 
spent more time in preprocessing, while the inference time 
remains the same.

● Sensitivity to remote memory: Different sensitivity to 
remote memory across stages, e.g., 100% for 
preprocessing, 385% for inference.
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Elastic Memory for Serverless Functions - Pitfall

Leveraging remote memory helps reduce costs by utilizing 
otherwise unused memory within the data center.

This introduces a trade-off between latency and reduced local 
memory footprint.

In serverless environments, auto-scaling maintains 
performance by spawning new instances when demand 
exceeds current capacity.

However, this can increase the number of active instances, 
potentially offsetting the benefits of local memory usage 
reduction.
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Elastic Memory for Serverless Functions - Pitfall

More aggressive 
scaling

implications on 
local memory 

footprint

Leveraging remote memory helps reduce costs by utilizing 
otherwise unused memory within the data center.

This introduces a trade-off between latency and reduced local 
memory footprint.

In serverless environments, auto-scaling maintains 
performance by spawning new instances when demand 
exceeds current capacity.

However, this can increase the number of active instances, 
potentially offsetting the benefits of local memory usage 
reduction.
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Preliminary Results 

Evaluate the overall impact on local memory footprint when setting different SLO targets.

1. Static interleaving policies 

2. Adaptive: Selects from the Pareto optimal set (minimum local memory footprint that satisfies the latency target)
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Preliminary Results 

● Static interleaving policies, fail to satisfy the SLO for most cases.

● Adaptive policy reduces local memory footprint by 6-25% (median), without violations.
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Conclusion

● Impact analysis and insights of leveraging remote memory for different 
serverless functions, and input sizes.

● Used weighted interleaving to allocate “just-enough” local memory for 
serverless functions. 

● Preliminary results show that local memory reductions can be achieved. 
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Future Work

Limitations of weighted interleaving:
● Round-robin page allocation
● Frequently used pages may be allocated in the remote memory.

Further optimization strategies:
● Page Access Frequency-aware page placement/migration
● Predictive strategies, e.g., memory prefetching 



Thank you for your attention

• Examine the impact of History and Horizon in the accuracy of our models


