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Introduction - Serverless Computing

An emerging Cloud Computing paradigm CAGR of 2024-2029
. o 15.3%
A growing market: 44.7 USD Billion by 2029 ey 447

A step closer to the promises of Cloud:

e Fully-managed by Cloud providers (AWS, Google, MS 18.4 2
=

e Pay-per-use (ms-scale) 2023 2024 2029

= North America = Europe Asia-Pacific

Middle-East Africa Latin America

e Elasticity (Demand-driven scale-out)
MARKET SIZE (USD BILLION)

Serverless Computing Report, Markets and Markets Report
Azure Functions | n https:/lwww.marketsandmarkets.com/Market-Reports/server

less-computing-market-217021547.html




Introduction - Serverless Computing

When a request arrives:

1. Initialization: Execution environment is initialized (If no [ 1. Environment Initialization [ 3. Keep-Alive Phase

. . . . [J 2. Function Execution [J 4. Graceful Termination
function instance is available).
<> Function ¢ ¢

invocation
t

2. Function execution: Functions usually receive/send their @m[dm @ @wan‘nstart g

inputs/outputs from/to remote storage. Memory footprint M — 1 I

. . S i I I /.
temporarily increases.. A
Yo ga
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3. Keep-Alive Phase: Function will remain idle (to avoid cold (w])(w][w] [w]

sta rtS) | Baremetal (Type 1) Hypervisor |
4. Graceful Termination Figure 1: Overview of a serverless function’s lifetime.
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Introduction - Memory Disaggregation

Traditional cluster setups lead to resource fragmentation at scale, where CPU
and memory resources are underutilized.

Memory disaggregation addresses this by decoupling memory from compute

nodes, treating it as an elastic, shared pool that can be dynamically allocated
and rebalanced across clusters.

Memory Stranding [1]
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Elastic Memory for Serverless Functions

Related Work on Elastic Memory

FaaSMem [1]: Focus on
initialization phase allocations

Memory Harvesting VMs [2]:
Right-sizes the memory allocated
by VMs

Adrias [3], Pond [4]: Select local or
remote memory binding to
improve resource efficiency
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The goal of this work is to explore, and leverage an
expanded, per-function memory configuration
space to increase resource efficiency of serverless
deployments in datacenters.

Specifically:
e Allocate different portions of memory locally.
e Consider the entire function lifecycle
e Use footprint-latency Pareto optimal solutions
for request-level optimizations.




Elastic Memory for Serverless Functions

&5 Hes 2025

Measure impact of remote memory allocations on the performance of 4 serverless functions from SeBs [1]

Our system uses Intel Optane Persistent Memory, configured as a zero-CPU NUMA node.

Varying input size and local/remote memory allocation ratio between 0 (fully remote) and 1 (fully local).
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Elastic Memory for Serverless Functions

Impact on latency varies per benchmark

6%-21% increase noisy/unaffected up to 284% 4%-85% increase
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Elastic Memory for Serverless Functions HCDS 2025

Slowdown w.r.t. Local (%)

(c) image recognition
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Elastic Memory for Serverless Functions

Impact on latency is counterintuitive.
For example in vision model inference serving (ResNet50):

e Execution phase stages: Image preprocessing -> Inference

v

e Stages contribution to execution latency: Larger images
spent more time in preprocessing, while the inference time

remains the same. @

e Sensitivity to remote memory: Different sensitivity to
remote memory across stages, e.g., 100% for
preprocessing, 385% for inference.
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Elastic Memory for Serverless Functions - Pitfall

Leveraging remote memory helps reduce costs by utilizing
otherwise unused memory within the data center.

U

This introduces a trade-off between latency and reduced local
memory footprint. @

In serverless environments, auto-scaling maintains
performance by spawning new instances when demand
exceeds current capacity. @

However, this can increase the number of active instances,
potentially offsetting the benefits of local memory usage
reduction.
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Leveraging remote memory helps reduce costs by utilizing
otherwise unused memory within the data center.

U

This introduces a trade-off between latency and reduced local
memory footprint. @

In serverless environments, auto-scaling maintains

performance by spawning new instances when demand
exceeds current capacity. @

However, this can increase the number of active instances,

potentially offsetting the benefits of local memory usage
reduction.
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Elastic Memory for Serverless Functions - Pitfall
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Preliminary Results

Evaluate the overall impact on local memory footprint when setting different SLO targets.

1. Static interleaving policies
2. Adaptive: Selects from the Pareto optimal set (minimum local memory footprint that satisfies the latency target)
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Preliminary Results

CDF

Violations (%)

e Static interleaving policies, fail to satisfy the SLO for most cases.

e Adaptive policy reduces local memory footprint by 6-25% (median), without violations.
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Conclusion

e Impact analysis and insights of leveraging remote memory for different
serverless functions, and input sizes.

e Used weighted interleaving to allocate “just-enough” local memory for
serverless functions.

® Preliminary results show that local memory reductions can be achieved.
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Future Work

Limitations of weighted interleaving:
e Round-robin page allocation
e Frequently used pages may be allocated in the remote memory.

Further optimization strategies:

® Page Access Frequency-aware page placement/migration
e Predictive strategies, e.g., memory prefetching
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Thank you for your attention



