
National Technical University of Athens

Microprocessors and Digital Systems Laboratory

Towards Elastic Memory Allocation of Serverless Functions
in Disaggregated Memory Systems

Achilleas Tzenetopoulos
ECE NTUA Ph.D. Student

Sotirios Xydis
ECE NTUA Ass. Professor

Dimitrios Soudris
ECE NTUA Professor

Dimosthenis Masouros
ECE NTUA Ph.D.

4th Workshop on Heterogeneous
Composable and Disaggregated Systems

Co-located with ASPLOS/EUROSYS 2025
Rotterdam, Netherlands

March 30, 2025

Microlab, NTUA

Overview

1. Introduction

1.1. Serverless Computing

1.2. Memory Disaggregation

2. Elastic Memory for Serverless Functions

2.1 Impact on latency

2.2 Memory footprint Pitfall

3. Preliminary Results

4. Conclusion & Future Work

2

#
#
#
#
#

Microlab, NTUA

Introduction - Serverless Computing

3

An emerging Cloud Computing paradigm

A growing market: 44.7 USD Billion by 2029

A step closer to the promises of Cloud:

● Fully-managed by Cloud providers (AWS, Google, MS

Azure).

● Pay-per-use (ms-scale)

● Elasticity (Demand-driven scale-out)

Serverless Computing Report, Markets and Markets Report
https://www.marketsandmarkets.com/Market-Reports/server
less-computing-market-217021547.html

Microlab, NTUA

Introduction - Serverless Computing

4

When a request arrives:

1. Initialization: Execution environment is initialized (If no
function instance is available).

2. Function execution: Functions usually receive/send their
inputs/outputs from/to remote storage. Memory footprint
temporarily increases..

3. Keep-Alive Phase: Function will remain idle (to avoid cold
starts)

4. Graceful Termination

Microlab, NTUA 5

Introduction - Memory Disaggregation

▪ Memory
over-provisioning

Full CPU
utilization

Memory
fragmentation

Unallocated
Memory

Memory Stranding [1]

[1] Li, Huaicheng, et al. "Pond: Cxl-based memory pooling systems for cloud platforms." Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2. 2023.

● Traditional cluster setups lead to resource fragmentation at scale, where CPU
and memory resources are underutilized.

● Memory disaggregation addresses this by decoupling memory from compute
nodes, treating it as an elastic, shared pool that can be dynamically allocated
and rebalanced across clusters.

Microlab, NTUA 6

Related Work on Elastic Memory

FaaSMem [1]: Focus on
initialization phase allocations

Memory Harvesting VMs [2]:
Right-sizes the memory allocated
by VMs

Adrias [3], Pond [4]: Select local or
remote memory binding to
improve resource efficiency

Elastic Memory for Serverless Functions

[1] Xu, Chuhao, et al. "Faasmem: Improving memory efficiency of serverless computing with memory pool architecture." Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 3. 2024.
[2] Fuerst, Alexander, et al. "Memory-harvesting vms in cloud platforms." Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems. 2022.
[3] Masouros, Dimosthenis, et al. "Adrias: Interference-aware memory orchestration for disaggregated cloud infrastructures." 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2023.
[4] Li, Huaicheng, et al. "Pond: Cxl-based memory pooling systems for cloud platforms." Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 2023.

The goal of this work is to explore, and leverage an
expanded, per-function memory configuration
space to increase resource efficiency of serverless
deployments in datacenters.

Specifically:
● Allocate different portions of memory locally.
● Consider the entire function lifecycle
● Use footprint-latency Pareto optimal solutions

for request-level optimizations.

Microlab, NTUA 7

Elastic Memory for Serverless Functions

● Measure impact of remote memory allocations on the performance of 4 serverless functions from SeBs [1]
● Our system uses Intel Optane Persistent Memory, configured as a zero-CPU NUMA node.
● Varying input size and local/remote memory allocation ratio between 0 (fully remote) and 1 (fully local).

[1] Copik, Marcin, et al. "Sebs: A serverless benchmark suite for function-as-a-service computing." Proceedings of the 22nd International Middleware Conference.
2021.

Microlab, NTUA 8

Elastic Memory for Serverless Functions

[1] Copik, Marcin, et al. "Sebs: A serverless benchmark suite for function-as-a-service computing." Proceedings of the 22nd International Middleware Conference.
2021.

6%-21% increase 4%-85% increase

Impact on latency varies per benchmark

up to 284%noisy/unaffected

Microlab, NTUA 9

Elastic Memory for Serverless Functions

Microlab, NTUA 10

Elastic Memory for Serverless Functions

Impact on latency is counterintuitive.
For example in vision model inference serving (ResNet50):

● Execution phase stages: Image preprocessing -> Inference

● Stages contribution to execution latency: Larger images
spent more time in preprocessing, while the inference time
remains the same.

● Sensitivity to remote memory: Different sensitivity to
remote memory across stages, e.g., 100% for
preprocessing, 385% for inference.

Microlab, NTUA 11

Elastic Memory for Serverless Functions - Pitfall

Leveraging remote memory helps reduce costs by utilizing
otherwise unused memory within the data center.

This introduces a trade-off between latency and reduced local
memory footprint.

In serverless environments, auto-scaling maintains
performance by spawning new instances when demand
exceeds current capacity.

However, this can increase the number of active instances,
potentially offsetting the benefits of local memory usage
reduction.

Microlab, NTUA 12

Elastic Memory for Serverless Functions - Pitfall

More aggressive
scaling

implications on
local memory

footprint

Leveraging remote memory helps reduce costs by utilizing
otherwise unused memory within the data center.

This introduces a trade-off between latency and reduced local
memory footprint.

In serverless environments, auto-scaling maintains
performance by spawning new instances when demand
exceeds current capacity.

However, this can increase the number of active instances,
potentially offsetting the benefits of local memory usage
reduction.

Microlab, NTUA 13

Preliminary Results

Evaluate the overall impact on local memory footprint when setting different SLO targets.

1. Static interleaving policies

2. Adaptive: Selects from the Pareto optimal set (minimum local memory footprint that satisfies the latency target)

Microlab, NTUA 14

Preliminary Results

● Static interleaving policies, fail to satisfy the SLO for most cases.

● Adaptive policy reduces local memory footprint by 6-25% (median), without violations.

Microlab, NTUA 15

Conclusion

● Impact analysis and insights of leveraging remote memory for different
serverless functions, and input sizes.

● Used weighted interleaving to allocate “just-enough” local memory for
serverless functions.

● Preliminary results show that local memory reductions can be achieved.

Microlab, NTUA 16

Future Work

Limitations of weighted interleaving:
● Round-robin page allocation
● Frequently used pages may be allocated in the remote memory.

Further optimization strategies:
● Page Access Frequency-aware page placement/migration
● Predictive strategies, e.g., memory prefetching

Thank you for your attention

• Examine the impact of History and Horizon in the accuracy of our models

