Umvers:ty of Callfornla Santa Cruz =

0L SANTA Ez | 2

. = - &%’ ?/(/(((l((f?: A =
BaskinEngineering | CRSS | St S ——

Introduction to GPU Observability & Motivation

e Rapid Growth of GPU Workloads
o HPCsimulations, large-scale ML/LLM, data analytics
o Need low-overhead observability to ensure performance
e Traditional Profiling Challenges
o Often intrusive; limited real-time insight
e Goal: Combine real-time GPU telemetry & dynamic instrumentation to identify bottlenecks quickly

Introducing eGPU

e Core ldea: Extend eBPF support to the GPU!

a. Advantages:

i. Add GPU telemetry for profiling.
ii. Integrated into current workflows.

“l nghtwelghtl eBPF userspace applications

HeBPF

eBPF bytecode

Userspace library: libbpf:-*

!

it

bpf function call

CUDA code

inlineHook

ptx injection

e
::' tracepoint

load [

1
bpftime—syscall . so
(JT - Wespr
verifier . compiler program

L compiler
Z inject
= i

Share memory E eBPF maps i

Comparison with Other Approaches

e NVIDIA Nsight/CUPTI

o Deep profiling but intrusive, dedicated runs
e Strobelight/BPF (Meta)

o Hooks CPU-level calls; less granular inside GPU kernels
e eGPU Advantages

o Dynamic injection

o Fine-grained event-level instrumentation in GPU

eGPU Challenges and Solutions

e Must inject new eGPU tracing logic into running GPU kernel. But, current
systems do not support self-modifying kernels!
o Key Idea: use checkout and restore techniques to replace running PTX
program (cite).
® Must coherently share memory across the GPU and CPU for storing telemetry
data.
o Add support to eBPF shared memory maps using CPU and CUDA atomic
primitives.

Performance Evaluation Setup

e Hardware
o Dual-Socket Intel Xeon + NVIDIA P40 GPU
e Tests
o Compare eGPU vs. native GPU kernels + nvbit

o Microbenchmarks (small kernels) & streaming tasks
e Metrics End to end latency (100 lookups)

o End-to-end latency o
o Throughput (tasks/sec)
o Overhead vs. baseline (0-6] —— Latency

—— iGuard baseline

0.8

0.4

0.2

0.0

(SH]

