
CRSS CONFIDENTIAL

eGPU: Extending eBPF Programmability and
Observability to GPUs

 Yiwei Yang, Yu Tong, Yusheng Zheng, Andrew Quinn
 Center for Research in Systems and Storage

 University of California, Santa Cruz

1

Introduction to GPU Observability & Motivation

2

● Rapid Growth of GPU Workloads
○ HPC simulations, large-scale ML/LLM, data analytics
○ Need low-overhead observability to ensure performance

● Traditional Profiling Challenges
○ Often intrusive; limited real-time insight

● Goal: Combine real-time GPU telemetry & dynamic instrumentation to identify bottlenecks quickly

Introducing eGPU

3

● Core Idea: Extend eBPF support to the GPU!
a. Advantages:

i. Add GPU telemetry for profiling.
ii. Integrated into current workflows.
iii. Lightweight!

Comparison with Other Approaches

4

● NVIDIA Nsight/CUPTI
○ Deep profiling but intrusive, dedicated runs

● Strobelight/BPF (Meta)
○ Hooks CPU-level calls; less granular inside GPU kernels

● eGPU Advantages
○ Dynamic injection
○ Fine-grained event-level instrumentation in GPU

eGPU Challenges and Solutions

5

● Must inject new eGPU tracing logic into running GPU kernel. But, current
systems do not support self-modifying kernels!
○ Key Idea: use checkout and restore techniques to replace running PTX

program (cite).
● Must coherently share memory across the GPU and CPU for storing telemetry

data.
○ Add support to eBPF shared memory maps using CPU and CUDA atomic

primitives.

Performance Evaluation Setup

6

● Hardware
○ Dual-Socket Intel Xeon + NVIDIA P40 GPU

● Tests
○ Compare eGPU vs. native GPU kernels + nvbit
○ Microbenchmarks (small kernels) & streaming tasks

● Metrics
○ End-to-end latency
○ Throughput (tasks/sec)
○ Overhead vs. baseline

