
CRSS CONFIDENTIAL

 wBPF: Efficient Edge-Case Observability for CXL
Pooling systems via eBPF

 Yusheng Zheng, Yu Tong, Yiwei Yang, Andrew Quinn
 Center for Research in Systems and Storage

 University of California, Santa Cruz

1

CXL Pooling system is booming…

2

● High Level idea:
○ Use cache coherency to replace distributed socket calls.
○ No serialization and deserialization cost
○ CXL3.0 memory pooling enables multiple hosts to share pooled memory devices

via low-latency interconnects.

● Global I/O-free Shared Memory Objects (GISMO) by MemVerge
● Concord a FaaS distributed Caching Scheme over CXL by UIUC Jovan

Challenges CXL memory pooling faces

3

○ Unexpected tail latency from CXL pooling (cite).
○ Concurrency bugs caused by multi-host memory environments, especially

when using multiple memory models (e.g., ARM and x86) (cite)
○ Existing academic (e.g., Hindsight) and industrial (e.g., Jaeger) tracing tools

are designed for distributed systems and are incompatible with the shared
memory setup of CXL pooling.

wBPF Design Overview

4

● Use lightweight language virtualization, in the form of WebAssembly, to provide a unified
platform across heterogeneous systems.
○ Solves the concurrency and consistency problems that arise from sharing memory across

heterogeneous hosts.
● Use a on-demand tracing library that captures detailed traces in a small ring buffer locally, and

only outputs when anomalies occur.
● It is a fully automated system (i.e., it detects what to put in the ring buffer)

Semantic Probing

5

● 1. How does wBPF know what to put in the ring buffer? Applications use a variety of APIs
that wBPF needs to support!

● 2. How does wBPF know when an anomaly occurs? The notion of an anomaly is
application specific!

● Proposed solution: LLMs!
○ LLM suggests what parts of the program to trace and what relates to an anomaly
○ Run program in testing environment and collect traces.
○ pass traces to LLM to see if it is satisfied that the traces explain the anomalies.
○ Repeat as necessary.

Use Case: Low Overhead Tracing

6

● Machine: single socket epyc 7742 with 256GB DDR4 Memory
Workloads: 2 services MicroBrick benchmarks

● Minimal Performance Impact
● Throughput vs Latency

Future Work

7

● Scalability – deploying wBPF in larger, multi-pool environments and ensuring its
overhead stays predictably low as trace volume increases.

● Enriching the semantic analysis, possibly using more advanced AI models to
cover a broader range of invariant violations.

● Integrating wBPF with existing distributed tracing ecosystems (like
OpenTelemetry), so that memory pool traces can be correlated with
application-level traces.

● As CXL technology evolves (e.g., CXL 3.0 with memory sharing between hosts),
wBPF could be adapted to trace new usage models, making it a continuous
asset for future heterogeneous, composable systems.

