Honey, | Shrunk the Guests

Page Access Tracking using a Minimal Virtualisation Layer

30.03.2025

Dustin Tien Nguyen®, Sebastian RuBer*, Maximilian Ott?,
Ridiger Kapitza®, Wolfgang Schroder-Preikschat?, Jorg Nolte?

* Friedrich-Alexander-Universitat Erlangen-Nirnberg
2 Brandenburgische Technische Universitat Cottbus-Senftenberg

Friedrich-Alexander-Universitét Brandenburgische
|E/A Technische Fakultat U Technische Universitat
| LI/ \ Cottbus - Senftenberg




Plenty of memory, hardly any knowledge

Many memory technologies Different characteristics
= HBM m Capacity
= DRAM m |atency
m Persistent Memory m Bandwidth
m CXL-attached memory m Persistence
= NUMA m Cost

How can we efficiently utilise memory?
¥ "Expert interfaces” are difficult (PMDK, libnuma)
¥ Language support does not expand to legacy programs (NV-Heaps)

-> Operating system support for transparent memory placement
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Problems we want to tackle

m Fast-tier memory is rare
— it must be distributed efficiently
m Process workloads shift over time
= in intensity
= in locality
m Memory placement decisions should
be adaptable

-» Detailed runtime information on memory utilisation is necessary
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Identifying which memory works best for a given process?

Conventional approaches Page Modification Logging (PML)
m Instrumentalisation m Virtualisation extension for VM
— expensive, very accurate checkpointing, VM migration
m Page table scanning/manipulation m Hardware-based logging of write
— expensive, coarse granularity accesses
m Sampling (PEBS) m Only works within virtualisation

— low overhead,

=» Is virtualisation viable for gathering memory access statistics?
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vmmload: A minimal virtualisation layer

m Guest OS introduces overhead

with the host 0S

m Processes should communicate

with other processes

m Processes should communicate }
|
|
|

— vmmload as minimal hypervisor
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Relaying of System Calls

Requirements Implications

m Isolate hypervisor from guest » Emulate system calls that manipulate

m Interface with host 0S the issuers process’ state

m Translation of memory addresses
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CPU-bound processes 1/0 bound processes
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m CPU-bound processes are hardly = Highly interactive processes

affected m System call overhead introduces great
m Delay incurred by greater PML buffer slowdown
size is low
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Access Patterns for c-ray
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= Identify total number of pages m Distinguish between read/write
m |dentify frequently accessed pages = Alteration of working set
m Frequency of PML events m Sparsity/density of accesses
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We have Next, we plan to
+ shown that vmmload can collect Reduce system call overhead to ; with
memory access statistics kernel integration
+ achieved statistics over read/write Derive memory placement/migration
accesses decisions

-» Source code is freely available

-> Thank you for your attention
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