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Plenty of memory, hardly any knowledge

Many memory technologies
HBM
DRAM
Persistent Memory
CXL-attached memory
NUMA

Different characteristics
Capacity
Latency
Bandwidth
Persistence
Cost

How can we efficiently utilise memory?
”Expert interfaces” are difficult (PMDK, libnuma)
Language support does not expand to legacy programs (NV-Heaps)

Operating system support for transparent memory placement
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Problems we want to tackle

Fast-tier memory is rare
→ it must be distributed efficiently
Process workloads shift over time

in intensity
in locality

Memory placement decisions should
be adaptable

Detailed runtime information on memory utilisation is necessary
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Identifying which memory works best for a given process?

Conventional approaches
Instrumentalisation
→ expensive, very accurate
Page table scanning/manipulation
→ expensive, coarse granularity
Sampling (PEBS)
→ low overhead, acceptable accuracy

Page Modification Logging (PML)
Virtualisation extension for VM
checkpointing, VM migration
Hardware-based logging of write
accesses
Only works within virtualisation

Is virtualisation viable for gathering memory access statistics?
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vmmload: A minimal virtualisation layer

Guest OS introduces overhead

Processes should communicate
with the host OS

Processes should communicate
with other processes

→ vmmload as minimal hypervisor Hardware
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Relaying of System Calls

Requirements
Isolate hypervisor from guest
Interface with host OS

Implications
Emulate system calls that manipulate
the issuers process’ state
Translation of memory addresses
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Slowdown

CPU-bound processes
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CPU-bound processes are hardly
affected
Delay incurred by greater PML buffer
size is low

I/O bound processes
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Highly interactive processes
System call overhead introduces great
slowdown
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Access Patterns for c-ray
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Summary

We have
shown that vmmload can collect
memory access statistics
achieved statistics over read/write
accesses

Next, we plan to
Reduce system call overhead to 1

4 with
kernel integration
Derive memory placement/migration
decisions

Source code is freely available

Thank you for your attention
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