
Honey, I Shrunk the Guests
Page Access Tracking using a Minimal Virtualisation Layer

30.03.2025

Dustin Tien Nguyen1, Sebastian Rußer1, Maximilian Ott1,
Rüdiger Kapitza1, Wolfgang Schröder-Preikschat1, Jörg Nolte2

1 Friedrich-Alexander-Universität Erlangen-Nürnberg
2 Brandenburgische Technische Universität Cottbus-Senftenberg

German Research Foundation

Funded by

Project No.
501993201



Plenty of memory, hardly any knowledge

Many memory technologies
HBM
DRAM
Persistent Memory
CXL-attached memory
NUMA

Different characteristics
Capacity
Latency
Bandwidth
Persistence
Cost

How can we efficiently utilise memory?
”Expert interfaces” are difficult (PMDK, libnuma)
Language support does not expand to legacy programs (NV-Heaps)

Operating system support for transparent memory placement

Honey, I Shrunk the Guests Introduction 1



Problems we want to tackle

Fast-tier memory is rare
→ it must be distributed efficiently
Process workloads shift over time

in intensity
in locality

Memory placement decisions should
be adaptable

Detailed runtime information on memory utilisation is necessary

Honey, I Shrunk the Guests Introduction 2



Identifying which memory works best for a given process?

Conventional approaches
Instrumentalisation
→ expensive, very accurate
Page table scanning/manipulation
→ expensive, coarse granularity
Sampling (PEBS)
→ low overhead, acceptable accuracy

Page Modification Logging (PML)
Virtualisation extension for VM
checkpointing, VM migration
Hardware-based logging of write
accesses
Only works within virtualisation

Is virtualisation viable for gathering memory access statistics?

Honey, I Shrunk the Guests Introduction 3



vmmload: A minimal virtualisation layer

Guest OS introduces overhead

Processes should communicate
with the host OS

Processes should communicate
with other processes

→ vmmload as minimal hypervisor Hardware

OSnative

VM

OSguest

App0 App1

PML with VM

Hardware

OSnative

vmmload0 vmmload1

App0 App1

PML with vmmload

Honey, I Shrunk the Guests Implementation 4



Relaying of System Calls

Requirements
Isolate hypervisor from guest
Interface with host OS

Implications
Emulate system calls that manipulate
the issuers process’ state
Translation of memory addresses

syscall
trap/vm

exit sy
sr
et relay

vm
runsy

sr
et

vm
en
te
r

sy
sr
etGuest
Process

Hypervisor
vmmload
FreeBSD
Host

Honey, I Shrunk the Guests Implementation 5



Slowdown

CPU-bound processes

0 8 16 32 64 12
8
25
6
51
2

1

1.1

1.2

1.3

PML buffer size / Accuracy

1.
00
58

1.
00
46

1.
00
51

1.
00
41

1.
00
44

1.
00
20

1.
00
33

1.
00
48

sl
ow
do
wn

c-ray

CPU-bound processes are hardly
affected
Delay incurred by greater PML buffer
size is low

I/O bound processes

0 8 16 32 64 12
8
25
6
51
2

1

1.1

1.2

1.3

PML buffer size / Accuracy

1.
17
91

1.
17
53

1.
18
27

1.
18
43

1.
17
14

1.
17
86

1.
17
82

1.
17
87

sl
ow
do
wn md5

Highly interactive processes
System call overhead introduces great
slowdown

Honey, I Shrunk the Guests Evaluation 6



Access Patterns for c-ray

0 10 20 30
200
400
600
800

seconds

n
pa
ge
s

hot warm cold

0

5

10

15

pm
le
ve
nt
sevents

Temperature
Identify total number of pages
Identify frequently accessed pages
Frequency of PML events

0 10 20 300x801000000

0x802069000

seconds

ad
dr
es
s

read write

Distribution
Distinguish between read/write
Alteration of working set
Sparsity/density of accesses

Honey, I Shrunk the Guests Evaluation 7



Summary

We have
shown that vmmload can collect
memory access statistics
achieved statistics over read/write
accesses

Next, we plan to
Reduce system call overhead to 1

4 with
kernel integration
Derive memory placement/migration
decisions

Source code is freely available

Thank you for your attention

Honey, I Shrunk the Guests Outlook 8


	Introduction
	Implementation
	Evaluation
	Outlook

