Honey, | Shrunk the Guests

Page Access Tracking using a Minimal Virtualisation Layer

30.03.2025

Dustin Tien Nguyen®, Sebastian RuBer*, Maximilian Ott?,
Ridiger Kapitza®, Wolfgang Schroder-Preikschat?, Jorg Nolte?

* Friedrich-Alexander-Universitat Erlangen-Nirnberg
2 Brandenburgische Technische Universitat Cottbus-Senftenberg

Friedrich-Alexander-Universitét Brandenburgische
|E/A Technische Fakultat U Technische Universitat
| LI/ \ Cottbus - Senftenberg

Plenty of memory, hardly any knowledge

Many memory technologies Different characteristics
= HBM m Capacity
= DRAM m |atency
m Persistent Memory m Bandwidth
m CXL-attached memory m Persistence
= NUMA m Cost

How can we efficiently utilise memory?
¥ "Expert interfaces” are difficult (PMDK, libnuma)
¥ Language support does not expand to legacy programs (NV-Heaps)

-> Operating system support for transparent memory placement

Honey, | Shrunk the Guests Introduction 1

Problems we want to tackle

m Fast-tier memory is rare
— it must be distributed efficiently
m Process workloads shift over time
= in intensity
= in locality
m Memory placement decisions should
be adaptable

-» Detailed runtime information on memory utilisation is necessary

Honey, | Shrunk the Guests Introduction 2

Identifying which memory works best for a given process?

Conventional approaches Page Modification Logging (PML)
m Instrumentalisation m Virtualisation extension for VM
— expensive, very accurate checkpointing, VM migration
m Page table scanning/manipulation m Hardware-based logging of write
— expensive, coarse granularity accesses
m Sampling (PEBS) m Only works within virtualisation

— low overhead,

=» Is virtualisation viable for gathering memory access statistics?

Honey, | Shrunk the Guests Introduction 3

vmmload: A minimal virtualisation layer

m Guest OS introduces overhead

with the host 0S

m Processes should communicate

with other processes

m Processes should communicate }
|
|
|

— vmmload as minimal hypervisor

Honey, | Shrunk the Guests Implementation

Appo | | App: |,
OSguest B[Aeee | [Apps |
VM ‘ E ‘ vmmloado ‘ ‘ vmmload, ‘
OSmive H 0 rne |
Hardware E Hardware ‘
PML with VM : PML with vmmload

Relaying of System Calls

Requirements Implications

m Isolate hypervisor from guest » Emulate system calls that manipulate

m Interface with host 0S the issuers process’ state

m Translation of memory addresses

Guest 2 g4

-0 [

Process v a:
P 4
. g s
Hypervisor =l c i ¢ .2
i< A . g
vmmload 38 i3 B 5 g
FreeBSD = O iz 7

Host \/ ; \/ \A

Honey, | Shrunk the Guests Implementation 5

CPU-bound processes 1/0 bound processes
13 | | | | 13 | | | |
c Doc-ray c Iimds
S 12| 1 3 12f .
s~ ® © ° d ¥ O ™ o S = 5 N [5
= n g o I I N ™ 5 = o Al = & c0 S 5
§11-r8 8888888 | 21EEEEEEEEH]
(%] Ll — L3 I i B o Ll %] o L - - : o o o
N e o D B f e 2 o d DD
M W
N fo NV N fo NV DY
PML buffer size / Accuracy PML buffer size / Accuracy

m CPU-bound processes are hardly = Highly interactive processes

affected m System call overhead introduces great
m Delay incurred by greater PML buffer slowdown
size is low

Honey, | Shrunk the Guests Evaluation 6

Access Patterns for c-ray

B hot warm cold read — write
15 0x802069000 |
800 | —events 9
2 : 8
on 600 10 ¢ o
S 400 it S
S 5 E E
200 o L
0 = | | I
0 10 20 30 0)(8010000000 10 20 30
seconds seconds
Temperature Distribution
= Identify total number of pages m Distinguish between read/write
m |dentify frequently accessed pages = Alteration of working set
m Frequency of PML events m Sparsity/density of accesses

Honey, | Shrunk the Guests Evaluation 7

We have Next, we plan to
+ shown that vmmload can collect Reduce system call overhead to ; with
memory access statistics kernel integration
+ achieved statistics over read/write Derive memory placement/migration
accesses decisions

-» Source code is freely available

-> Thank you for your attention

Honey, | Shrunk the Guests Outlook 8

	Introduction
	Implementation
	Evaluation
	Outlook

